Financial Applications of Learning from Hints
نویسنده
چکیده
The basic paradigm for learning in neural networks is 'learning from examples' where a training set of input-output examples is used to teach the network the target function. Learning from hints is a generalization of learning from examples where additional information about the target function can be incorporated in the same learning process. Such information can come from common sense rules or special expertise. In financial market applications where the training data is very noisy, the use of such hints can have a decisive advantage. We demonstrate the use of hints in foreign-exchange trading of the U.S. Dollar versus the British Pound, the German Mark, the Japanese Yen, and the Swiss Franc, over a period of 32 months. We explain the general method of learning from hints and how it can be applied to other markets. The learning model for this method is not restricted to neural networks.
منابع مشابه
Machine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملFinancial model calibration using consistency hints
We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leible...
متن کاملInteractive concept learning for end-user applications
Personalizable software agents will learn new tasks from their users. This implies being able to learn from instructions users might give: examples, yes/no responses, and ambiguous, incomplete hints. Agents should also exploit background knowledge customized for applications such as drawing, word processing and form-filling. The task models that agents learn describe data, actions and their con...
متن کاملA Method for Learning From Hints
We address the problem of learning an unknown function by pu tting together several pieces of information (hints) that we know about the function. We introduce a method that generalizes learning from examples to learning from hints. A canonical representation of hints is defined and illustrated for new types of hints. All the hints are represented to the learning process by examples, and exampl...
متن کاملOverview of learning theories and its applications in medical education
Introduction: The purpose of teaching is learning, and learning is related to learning theories. These theories describe and explain how people learn. According to various experts' opinion about learning, many theories emerged. The paper reviewed three major approaches include behaviorism, cognitive and constructive learning and its educational applications in medical science. Methods: this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994